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The integral subsets of octonions are an analog of integers in real numbers and related
to many interesting topics in geometry and physics via E8-lattices. In this paper, we
study the properties of the multiplication of the integral subsets of octonions by studying
configuration of Fano plane via blocks and operations on them. And we show that the
integral subsets are integral indeed by introducing new and elementary methods.
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1. Introduction

The octonions are normed division algebras whose classification consists of the
real numbers R, the complex numbers C, the quaternions H and the octonions O.
The octonions are a very complicated algebra since its product is neither commu-
tative nor associative. The subtle product of O is the main source of the most
complex issues in the exceptional groups including G2 and E8 which are related

‖Corresponding author.
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to certain types of symmetries which drive attraction to physics and geometry.
In fact, one can find numerous studies utilizing the octonions in physics includ-
ing the Great Unification Theory or the Theory of Everything. Very often, the
E8-lattice (also called the Gosset lattice), which is a unimodular root lattice of
rank 8, appears as a key player to convey the above symmetries on behalf of the
octonions.

On the other hand, the E8-lattice can be considered a subset in O which is
called an integral octonion, an analog of integers in the real numbers. In particular,
Coxeter [3] worked on the integral octonions (also called integral Cayley numbers)
to study the Gosset polytope 421 which is an eight-dimensional uniform polytope
with E8-symmetry. Koca et al. [4–6] studied the symmetries given by the integral
octonions and the pure integral octonions, and applied the studies to mathematical
physics. Recently, Conway and Smith explained the integral octonions and their
relationship to the E8-lattice in [2].

Even though the integral octonion appears as one of the fundamental figures in
many interesting research topics, the nature of the integral octonion given by the
multiplication of an integral subset of a normed algebra is far beyond understood.
From this motivation, we study the integral subsets of normed algebras. In partic-
ular, we study the multiplication in O according to integrality and produce new
and elementary proof of closedness of certain subsets for the multiplication so that
they are indeed integral octonion subsets. Therein, we also provide rather explicit
studies on the multiplications of the integral subsets which bring many subtle
puzzles.

In Sec. 2, according to [3], we introduce the definition of integral subsets of
normed division algebras and recall well-known examples of them. In Sec. 3, we
introduce octonions along the Fano plane. According to the configuration of Fano
plane we define normal blocks and conormal blocks which play key roles to study
the multiplications of octonions, and introduce swaps which are operations on the
set B of those blocks. Well known as Kirmse’s mistake (see [3]), the subset OZ

defined as

OZ := span
Z

{
1
2
(±ea ± eb ± ec ± ed) ∈ O | {a, b, c, d} ∈ B

}

is not closed under multiplication. Therefore, we twist the blocks B by swaps σ(i,j)

to define new subset OZ(i, j) as

OZ(i, j) := span
Z

{
1
2
(±ea ± eb ± ec ± ed) ∈ O | {a, b, c, d} ∈ σ(i,j)(B)

}

and show OZ(i, j) is a integral subset O. Here we provide a new proof by introducing
elementary and self-contained methods to show the closedness for the multiplica-
tion. We also list the generators of Weyl groups for the Dynkin diagram which
identify the integral subset OZ(0, 7) as an E8-lattice in O.
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2. Integral Subsets of Algebras

In this section, we introduce the definition of integral subsets of algebras in the
Coxeter’s work [3] via the modern treatment of the normed division algebras
in [1, 2].

Let A be an algebra which is a finite-dimensional vector space over R equipped
with a multiplication · and its unit element 1. Moreover the algebra is called a
normed (division) algebra if the algebra is also a normed vector space with a norm
‖ ‖ satisfying ‖a · b‖ = ‖a‖‖b‖ for all a and b in A. Here each norm on the normed
algebra gives a derived inner product defined by

2(a, b) := {‖a + b‖2 − ‖a‖2 − ‖b‖2},

and each a in A satisfies a rank equation

a2 − 2(a, 1)a + ‖a‖2 = 0.

It is well known that the classification of the normed algebras consists of the real
numbers R, the complex numbers C, the quaternions H and the octonions O.

Definition 1. A subset S of a normed algebra A is called integral (or a set of
integral elements) if it satisfies the following conditions:

(1) For each element S, the coefficients of the above rank equation are integers.
(2) The set S is closed under subtraction.
(3) The set S is closed under multiplication.
(4) 1 ∈ S.
(5) S is a maximal subset in A with (1)–(4).

Example 2. When A is complex numbers, the subset

S1 := {a0 + a1i ∈ C | a0, a1 ∈ Z}

in C satisfies the above conditions. The elements of the subset are called the Gaus-
sian integers. Here we check condition (5). Let S′ be another subset in C where
it satisfies above conditions (1)–(4) and S′ � S1. Then there exist w in S′ − S1

and z in S1 ⊂ S′ where the distance between z and w is less than 1, namely,
‖w − z‖ < 1. But since S′ satisfies conditions (1) and (2), w − z ∈ S′ and
‖w−z‖2 ∈ Z. This gives a contradiction to the existence of S′. Thus S1 satisfies the
condition (5).

Example 3. A subset S2 := {a0 + a1
−1+

√−3
2 ∈ C | a0, a1 ∈ Z} in C is an integral

subset.

Example 4. The set of the quaternions H is a real four-dimensional vector space
which is spanned by a basis {1, i, j, k}, and its normed algebra is given by an
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associative multiplication satisfying

i2 = j2 = k2 = ijk = −1.

We consider a subset HI in H consisting of the quaternions a01 + a1i + a2j + a3k

whose coefficients a0, a1, a2, a3 are synchronically chosen from either Z or Z+ 1
2 ,

namely,

HI =


q ∈ H

∣∣∣∣∣∣∣∣
q = b01 + b1i + b2j + b3k or

b01 + b1i + b2j + b3k + 1
2 (1 + i + j + k)

for b0, b1, b2, b3 ∈ Z


.

In fact, this subset HI is integral and it is known as the Hurwitz integral quater-
nions. Checking conditions (1)–(4) can be done via rather simple computations and
condition (5) can be checked by following the argument in Example 2.

3. Integral Octonions

The set of the octonions O is a real eight-dimensional vector space given as

O := {a0e0 + a1e1 + · · · + a7e7 ∈ O | ai ∈ R}
which has a multiplication defined by e0 = 1, e2

1 = e2
2 = · · · = e2

7 = −1 and the
following Fano plane:

Fano Plane

Here for any two different i and j in {1, 2, 3, 4, 5, 6, 7} the multiplication of eiej

is determined as ±ek which is the third element in the unique line in the Fano plane
containing ei and ej where (+) sign is given if the order of the multiplication is
matched with the direction of the arrow of the side and otherwise (−) sign is given.

For any octonion a =
∑7

i=0 aiei, the real part Re a and norm ‖ ‖ are defined as
Re a := a0 = (a, 1), ‖a‖2 =

∑7
i=0 a2

i .
Just like the quaternions H, the multiplication of the octonions O is not commu-

tative, and furthermore, it is not associative. This lack of the associativity makes
the research on the octonions O very difficult and complicated, but it is also the
main source of anomalies in mathematical physics such as M -theory.
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3.1. Normal blocks and conormal blocks

In this subsection, we introduce normal blocks and conormal blocks to the above
Fano plane and an operation on the set of blocks called a swap. The blocks and
swap will play key roles to study integral subset of octonions.

For each line in the Fano Plane and elements ei, ej , ek in the line, we call
the subscript subset {0, i, j, k} of I := {0, 1, 2, 3, 4, 5, 6, 7} and the corresponding
complementary subset I − {0, i, j, k} as a normal block (or n-block) and a conor-
mal block (or c-block). The union of all n-blocks and c-blocks is denoted B and
its element is referred as a block. In the following table, we list all n-blocks and
c-blocks:

n-block {0, 1, 2, 3}{0, 3, 4, 7}{0, 2, 5, 7}{0, 1, 6, 7}{0, 1, 4, 5}{0, 2, 4, 6}{0, 3, 5, 6}
c-block {4, 5, 6, 7}{1, 2, 5, 6}{1, 3, 4, 6}{2, 3, 4, 5}{2, 3, 6, 7}{1, 3, 5, 7}{1, 2, 4, 7}

The blocks have the following interesting properties which are useful to study
the integral subset in octonions.

Lemma 5. For any two blocks B1 and B2 in B, |B1 ∩ B2| = 2 and B1 � B2(:=
B1 ∪ B2 − B1 ∩ B2) is also a block unless B1 ∩ B2 = ∅ or B1 = B2.

Proof. In the following, we only consider two blocks which are neither B1∩B2 = ∅
nor B1 = B2.

Case 1 (Both B1 and B2 are n-blocks). Since any two lines in the Fano plane
share a vector, any two n-blocks share two subscripts in I including 0. Moreover,
B1 �B2 is a c-block because |B1 �B2| = 4 and B1 �B2 does not contain 0 and a
line in the Fano plane.

Case 2 (Both B1 and B2 are c-blocks). Because I − B1 and I − B2 are n-
blocks, we obtain |B1 ∪ B2| = 6 from 2 = |(I − B1) ∩ (I − B2)| = |I − (B1 ∪ B2)|
by applying Case 1. Thus |B1 ∩ B2| = |B1| + |B2| − |B1 ∪ B2| = 8 − 6 = 2. Now
B1 � B2 is a c-block because B1 � B2 consists of four elements in the Fano plane
without containing 0 and a line in the Fano plane.

Case 3 (B1 is an n-blockand B2 is a n-block). Since B1 ∩B2 �= ∅, I −B2 and
B1 are two n-blocks in case 1. Thus |B1∩(I−B2)| = 2 and we obtain |B1∩B2| = 2.
Moreover B1 �B2 be an n-block since |B1 � B2| = 4 and B1 � B2 contains 0 and
a line in the Fano plane.

Remark. When B1∩B2 = ∅ (respectively, B1 = B2), |B1∩B2| = 0 (respectively, 4).
Therefore for any two blocks B1 and B2 in B, |B1 ∩ B2| must be an even number.

Now, we define swaps on I as follows.

Definition 6. A permutation σ : I → I is called a swap if it is an involution
σ2 = 1. We denote the set of all the swaps on I as Sw.
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Remark.(1) A transposition (i, j) is the typical example of swaps. We call such
swap σ a simple swap and denote it as σ(i,j).

(2) One can observe that each swap σ can be written as a finite composition of dis-
joint transpositions, which is uniquely determined up to permutation of trans-
positions.

(3) It is clear that Sw is a subset of the permutation group S8, but not closed under
the composition of bijections on I. Thus we perform the composition of swaps
in Sw as elements in S8.

We consider a swap σ(i,j) = (i, j) and call the image of a block of B via σ(i,j)

an (i, j)-block. Here σ(i,j)(B) contains two new types of blocks in addition to n-
blocks and c-blocks. Simply a block A in σ(i,j)(B) consisting of subscripts of a line
and another vector (instead of e0) in the Fano plane is called an α -block, and the
complement of an α-block given as I−A is called a β-block. Obviously, each β-block
contains 0 ∈ I.

For any subset A, B in I and a permutation σ̃ on I, one can show that

σ̃(A � B) = σ̃(A) � σ̃(B).

Therefore, we obtain the following lemma for (i, j)-blocks in σ(i,j)(B) by applying
lemma 5.

Lemma 7. For any two (i, j)-blocks B1, B2 in σ(i,j)(B), |B1∩B2| = 2 and B1�B2

is also an (i, j)-block unless B1 ∩ B2 = ∅ or B1 = B2.

3.2. Integral subsets in octonions

In this subsection, we define subsets in octonions O and show that they are integral
subsets in octonions.

At first, we consider a subset OB in O by using the set of blocks B as

OB :=
{

1
2
(±ea ± eb ± ec ± ed) ∈ O | {a, b, c, d} ∈ B

}
,

and we define a subset OZ in O as

OZ := span
Z
OB.

Unfortunately, OZ is not an integral subset in O because it is not closed under
multiplication by checking

1
2
(e0 + e1 + e4 + e5) · 1

2
(e4 + e5 + e6 + e7) =

1
2
(−e0 + e3 + e5 + e7) �∈ OZ .

Therefore, we apply simple swaps to produce new subsets in O from OZ so that
the new subset is closed under multiplication. Here we consider a simple swap σ(i,j)

for each {i, j} ⊂ I and

OB(i, j) :=
{

1
2
(±ea ± eb ± ec ± ed) ∈ O | {a, b, c, d} ∈ σ(i,j)(B)

}
.
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We also define a subset OZ(i, j) in O as

OZ(i, j) := span
Z
OB(i, j).

In the following theorem, we have another way to express the elements in
OZ(i, j).

Theorem 8. For each {i, j} ⊂ I and the subset OZ(i, j) in O, we have

OZ(i, j) =




7∑
i=0

aiei ∈ O

∣∣∣∣∣∣∣∣∣

simultaneously ai ∈ Z

or simultaneously ai ∈ Z+ 1
2

or only four ai are in Z+ 1
2 (the others are in Z)

whose choices are given from σ(i,j)(B)




.

Note. We denote the set in the right-hand side as S(i, j) and group the elements
in S(i, j) by three types (a) simultaneously ai ∈ Z, (b) simultaneously ai ∈ Z+1

2 ,
and (c) only four ai are in Z+ 1

2 where the four choices are given by an (i, j)-block
in σ(i,j)(B). The elements of type (a) are called Gravesian integers, and octonions
whose coefficients are in either Z or Z+1

2 are called Kleinian integers [2].

Proof of Theorem 8. (1) First we show that OZ(i, j) ⊃ S(i, j).
For each a ∈ I, there exists an (i, j)-block {a, b, c, d} in σ(i,j)(B) and we have

ea =
1
2
(ea + eb + ec + ed) +

1
2
(ea − eb − ec − ed) ∈ OZ(i, j).

Moreover, since the linear combinations of ea over Z are in OZ(i, j), the elements
of S(i, j) of type (a) are in OZ(i, j).

Each element x of S(i, j) of type (b) is also in OZ(i, j) because it is the linear
combination of 1

2

∑7
i=0 ei in OZ(i, j) and x− 1

2

∑7
i=0 ei which is an element of S(i, j)

of type (a).
For an element x of S(i, j) of type (c), we obtain 1

2 (ea + eb + ec + ed) ∈ OZ(i, j)
from the corresponding four choices given by (i, j)-block {a, b, c, d} in σ(i,j)(B).
Moreover since x − 1

2 (ea + eb + ec + ed) is an element of S(i, j) of type (a), x is in
OZ(i, j).

Thus we show that OZ(i, j) ⊃ S(i, j).
(2) we show that OZ(i, j) ⊂ S(i, j).
Because it is clear that σ(i,j)(OB(i, j)) ⊂ S(i, j) by definition of S(i, j), it is

enough to show that S(i, j) is closed under linear combinations over Z. To show
this, we only need to check the sum of two elements in S(i, j) of type (c). Consider
x and y in S(i, j) of type (c) corresponded to (i, j)-block Bx and By. Here |Bx∩By|
can be 0, 2, 4 by Lemma 7. When |Bx∩By| = 0 (respectively, 4), we have Bx∩By = ∅
(respectively, Bx = By), and x+ y is an element in S(i, j) of type (b) (respectively,
(a)). When |Bx ∩ By| = 2, B1 � B2 is also an (i, j)-block by Lemma 7, and x + y

is an element in S(i, j) of type (c).
This shows that OZ(i, j) ⊂ S(i, j).
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Remark. Since the subset of all the type (a) forms an lattice

O0 := span
Z

{
7∑

i=0

aiei ∈ O

∣∣∣∣∣ ai ∈ Z

}
,

we have O0 ⊂ OZ(i, j) by Theorem 8. Therefrom, we define an equivalent relation-
ship

x ∼ y x, y ∈ OZ(i, j) :⇐⇒ x − y ∈ O0.

We also denote it by x ≡ y mod O0. By Theorem 8 the set of equivalence classes is
bijective to {0, 1

2

∑7
i=0 ei} ∪ OB(i, j).

Integral conditions for OZ(i, j) in O

Now, we check the conditions of integral subsets OZ(i, j) in O.

(a) By applying Theorem 8, each x = a0e0 + a1e1 + · · ·+ a7e7 in OZ(i, j) is one of
three types in S(i, j). For each type, we have 2(x, 1) = 2(x, e0) = 2a0 ∈ Z. For
type (c) with corresponding (i, j)-block {a, b, c, d} in σ(i,j)(B)

7∑
i=0

a2
i =

∑
i∈I−{a,b,c,d}

a2
i +

∑
i∈{a,b,c,d}

((
ai − 1

2

)
+

1
2

)2

=
∑

i∈I−{a,b,c,d}
a2

i +
∑

i∈{a,b,c,d}

(
ai − 1

2

)2

+
∑

i∈{a,b,c,d}

(
ai − 1

2

)
+ 1 ∈ Z.

Similarly, for other types, we have
∑7

i=0 a2
i ∈ Z. This shows condition (1) for

integral subsets.
(b) Conditions (2) and (4) are trivial by definition of OZ(i, j).
(c) Condition (5) can be checked by following the argument in Example 2. It is

enough to show that for any x in O, there is y in OZ(i, j) with ‖x − y‖ < 1.
According to remark of Theorem 8, we may consider x =

∑7
i=0 aiei where

ai ∈ [0, 1) for each i. We set cases according to the coefficients, then find
y in OZ(i, j) with ‖x − y‖ < 1. Since these cases can be checked by rather
simple calculations, we skip the full process. One special case is x =

∑7
i=0 aiei

where ai ∈ { 1
4 , 3

4} for each i. We choose y =
∑7

i=0
1
2ei in OZ(i, j), and obtain

‖x − y‖ ≤ 8(1
4 )2 < 1.

(d) Condition (3) for the multiplication on OZ(i, j) is not trivial. In the following
subsection, we show that OZ(i, j) is closed under multiplication.

The above argument is summarized as the following main theorem.

Theorem 9. For each {i, j} ⊂ I, the subset OZ(i, j) in O is an integral subset
in O.
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3.3. Multiplication on OZ(i, j)

In this subsection, we show OZ(i, j) for each {i, j} ⊂ I is closed under multiplica-
tion. To do that, we show: (1) it is enough to show a special case of {i, j} ⊂ I, and
(2) OZ(0, 7) is closed under multiplication.

M-(1) It is enough to show a special case of {0, 7} ⊂ I

We separate {i, j} ⊂ I into two cases (a) {0, j}, and (b) {i, j} where i, j �= 0.
The multiplication issue for the cases of OZ(0, j) is clearly equivalent to OZ(0, 7)

because of the symmetry on Fano plane.
For the cases of {i, j}, there is a unique k ∈ I so that {0, i, j, k} is an n-block in B.

We claim OZ(i, j) = OZ(0, k). Therefrom, OZ(0, k) is closed under multiplication,
OZ(i, j) is closed under multiplication and therefore we prove the claim in the
following proposition.

Proposition 10. For any n-block {0, i, j, k} in B, OZ(i, j) = OZ(0, k).

Proof. We consider a permutation σ(i,j)σ(0,k) : I → I and show σ(i,j)σ(0,k) pre-
serves the set of blocks B.

Consider an n-block B in B, the n-block B is either {0, i, j, k} itself or another n-
block whose intersection with {0, i, j, k} is one of {0, i}, {0, j}, {0, k} (by Lemma 5).
If B is {0, i, j, k} or another n-block whose intersection with {0, i, j, k} is {0, k},
clearly σ(i,j)σ(0,k)(B) = B. If B is another n-block whose intersection with {0, i, j, k}
is {0, i} (respectively, {0, j}), σ(i,j)σ(0,k)(B) is a c-block whose intersection with
{0, i, j, k} is {k, j} (respectively, {k, i}). For a c-block C in B, the I − C is an n-
block in B. By the above, σ(i,j)σ(0,k)(I − C) = I − σ(i,j)σ(0,k)(C) is a block in B,
and σ(i,j)σ(0,k)(C) is also a block in B.

Since σ(i,j)σ(0,k) preserves the set of blocks B, we get σ(i,j)(B) = σ(0,k)(B) and
obtain

OZ(i, j) = span
Z
(OB(i, j)) = span

Z
(OB(0, k)) = OZ(0, k).

In conclusion, in order to show that OZ(i, j) for each {i, j} ⊂ I is closed under
multiplication, it is enough to check a special case of {i, j} ⊂ I. Thus we work on
OZ(0, 7) below.

M-(2) OZ(0,7) is closed under multiplication

(1) Transformations on (0,7)-blocks:
Before we show that OZ(0, 7) is closed under multiplication, we perform a series

of transformations on (0, 7)-blocks given by the multiplication of each ei to obtain
the configuration of (0, 7)-blocks. Here we use a diagram derived from Fano plane
to present the transformations.

We group the (0, 7)-blocks in σ(0,7)(B) by a type A block (∈ σ(0,7)(B) − B)
and a type B block (∈ σ(0,7)(B) ∩ B). Here σ(0,7) acts on σ(0,7)(B) ∩ B but it does
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not preserve each element in σ(0,7)(B) ∩ B. Type A blocks consist of α-blocks and
β-blocks. In below, we list the (0, 7)-blocks by type:

Type A
α-block {7, 1, 2, 3}{7, 1, 4, 5}{7, 2, 4, 6}{7, 3, 5, 6}
β-block {4, 5, 6, 0}{2, 3, 6, 0}{1, 3, 5, 0}{1, 2, 4, 0}

Type B
n-block {0, 3, 4, 7}{0, 2, 5, 7}{0, 1, 6, 7}
c-block {1, 2, 5, 6}{1, 3, 4, 6}{2, 3, 4, 5}

(0,7)-blocks

Moreover, we introduce a diagram presenting blocks using Fano plane. For each
block, we mark vectors in the Fano plane according to the subscripts in the box. For
example, the diagrams of n-block {0, 3, 4, 7} and α-block {3, 5, 6, 7} are presented
as below:

The diagrams of blocks in (0, 7)-blocks are listed below:

Diagrams of (0,7)-blocks

Now we define permutation τi on I defined for ei as

τi : I → I,

j �→ τi(j) := subscript of ei · ej .

Note that when we define τi(j), we ignore the signature of ei · ej . Moreover,
the permutation τi induces a transformation on the (i, j)-blocks, which is also
denoted τi. The transformations involve tedious calculations of octonions. In below
we use block diagrams to present the transformation of τi on type A blocks in
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(0, 7)-blocks:

Transformation of type A blocks in (0,7)-blocks

In the above table, the transformation τi(i �= 0) is presented by the Fano plane
with a mark on ei, and the transformation τ0 is also presented by the Fano plane
with no mark. The table presents that a type A block in the kth row in the left
end column is sent to the type A block in the lth column in the top row via the
transformation presented by the diagram in (k, l) coordinates.

From the above table, we obtain the following useful lemma.

Lemma 11. (1) For each i ∈ I and corresponding transformation τi, the set of
type A blocks in (0, 7)-blocks is preserved by τi.

(2) For each pair of type A (0, 7)-blocks A1 and A2, there is i ∈ I such that τi(A1) =
A2 and τi(A2) = A1.

(3) For each type B (0, 7)-block B1, there is a pair of type A (0, 7)-blocks A1 and
A2 such that B1 = A1 � A2.

Proof. (1) and (2) are clear from the above table.
(3) Thanks to the symmetry of the Fano plane, we only need to check the

following two cases:
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This proves the lemma.

(2) Multiplication on OZ(0, 7):
We show the multiplication on OZ(0, 7) by checking the following steps.

(a) For each element x in OZ(0, 7) given by a type A block in σ(0,7)(B) and
ei (i ∈ I), x · ei and ei · x are also elements in OZ(0, 7) given by type A
blocks.

(b) For each pair of x and y in OZ(0, 7) given by two type A blocks in σ(0,7)(B),
there is a pair of x′ and y′ in OB(0, 7) ⊂ OZ(0, 7) with x ≡ x′, y ≡ y′ mod O0

satisfying x′ · y′ ∈ OZ(0, 7).
(c) For each pair of x and y in OZ(0, 7) given by two type A blocks in σ(0,7)(B),

x · y ∈ OZ(0, 7).
(d) OZ(0, 7) is closed under multiplication.

Note. We denote D as the subset of elements in OZ(0, 7) given by a type A block
in σ(0,7)(B).

Step (a). For each element x in D and ei (i ∈ I), x · ei and ei · x are in D.

Proof. Since eiej = −ejei for i �= j , it is enough to check ei · x in OZ(0, 7) for
each x in OZ(0, 7).

For each x =
∑7

j=0 ajej , we have ejx =
∑7

j=0 ±ajeτi(j). Since x is type (c)
given by type A, x can be written as x = x′ + 1

2 (ea + eb + ec + ed) where x′

is type (a) and {a, b, c, d} is a type A block in σ(0,7)(B), and moreover ejx =
ejx

′+ 1
2 (eτi(a)+eτi(b)+eτi(c)+eτi(d)). Here {τi(a), τi(b), τi(c), τi(d)} is also a type A

block in σ(0,7)(B) by Lemma 11, and ejx is an element in OZ(0, 7) given by a type A
block.

Step (b). For each pair of x and y in D, there is a pair of x′ and y′ in OB(0, 7) ⊂
OZ(0, 7) with x ≡ x′, y ≡ y′ mod O0 satisfying x′ · y′ ∈ OZ(0, 7).

Proof. Let x and y be a pair of elements in OZ(0, 7) given by two type A blocks
Ax = {a, b, c, d} and Ay respectively. By Lemma 11, there is j ∈ I such that
τj(Ax) = Ay. We can choose x′ = 1

2 (ea + eb + ec + ed) and take y′′ = 1
2 (eτj(a) +

eτj(b) + eτj(c) + eτj(d)) so that x ≡ x′, y ≡ y′′ mod O0. Moreover, we adjust the
coefficients of y′′ to get y′ = x′ · ej according to mod O0 so that y′ still satisfies
y ≡ y′ ≡ y′′ mod O0. Now we have x′ · y′ = x′ · (x′ · ej) = (x′)2 · ej.
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By applying the rank equation,

(x′)2 = 2(x′, 1)x′ − 1 =

{
±x′ − 1 if (x′, 1) = ±1

2
,

−1 if (x′, 1) = 0.

Therefrom, (x′)2 · ej is in OZ(0, 7) by step (a). This shows step (b).

Step (c). For each pair of x and y in D, x · y ∈ OZ(0, 7).

Proof. By step (b), there is a pair of x′ and y′ in OB(0, 7) ⊂ OZ(0, 7) with x ≡ x′,
y ≡ y′ mod O0 satisfying x′ ·y′ ∈ OZ(0, 7). According to the remark of Theorem 8,
x and y can be written as x = x0 + x′ and y = y0 + y′ where x0 and y0 are
type (a). Here, (1) since O0 = span

Z
{∑7

i=0 aiei ∈ O | ai ∈ Z} ⊂ OZ(0, 7) is clearly
closed under multiplication, x0 · y0 is in OZ(0, 7), (2) by step (a), x0 · y′ and x′ · y0

are in OZ(0, 7), and (3) by step (b), x′ · y′ is in OZ(0, 7). Therefrom, we obtain
xy ∈ OZ(0, 7).

Step (d). OZ(0, 7) is closed under multiplication.

Proof. By Lemma 11, any element in OZ(0, 7) given by a type B block in σ(0,7)(B)
can be expressed as a sum of two elements in D. Thus we obtain OZ(0, 7) =
span

Z
(D). Since the multiplication of any two elements in D is in OZ(0, 7) by

step (c), OZ(0, 7) is closed under multiplication.

3.4. E8 root lattice in O

Now we can identify the integral subset OZ(0, 7) as an E8-lattice in O. Here an E8

lattice in O is generated by the elements in OZ(0, 7) with length 1 via the Weyl
action. The action is given by the following Dynkin diagram of E8:

E8 Dynkin diagram

Here, Xi i ∈ I in the diagrams are chosen as follows:

X1 =
1
2
(e0 − e2 + e3 − e6), X5 =

1
2
(e1 + e2 + e3 + e7),

X2 =
1
2
(−e0 − e4 + e5 + e6), X6 =

1
2
(−e2 − e3 + e4 + e5),

X3 =
1
2
(−e1 + e4 − e5 − e7), X7 =

1
2
(e0 − e4 − e5 + e6),

X4 =
1
2
(e1 − e3 − e4 − e6), X8 =

1
2
(−e0 − e1 − e6 + e7).
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[5] M. Koca and R. Koç, Automorphism groups of pure integral octonions, J. Phys. A 27

(1994) 2429–2442.
[6] M. Koca and N. Ozdes, Division algebras with integral elements, J. Phys. A 22(10)

(1989) 1469–1493.

1650144-14

J.
 A

lg
eb

ra
 A

pp
l. 

20
16

.1
5.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
E

O
U

L
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/3

0/
19

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.


