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γ̄W :=
γ̃W

⟨γ̃W, γ̃W⟩C
 where γ̃W =

1
nW

nW

∑
i=1

γ(yi(1)) − γ(yi(0))

What Does “Linear” Even Mean?

Concepts in LLMs

Formalizing Linear Representation Hypothesis
We first formalize the subspace notions of linear representations, then 

use softmax structure to connect them to measurement and intervention.

Problems:                                                                                    
How do the unembedding and embedding representations relate? 

What is the right inner product for the representation space?

We introduce the causal inner product  such that 

 whenever  and  are causally separable.

⟨ ⋅ , ⋅ ⟩C
⟨γ̄W, γ̄Z⟩C = 0 W Z

This unifies the unembedding and embedding representations via 
. (This is the Riesz isomorphism.)⟨γ̄W, ⋅ ⟩C = (λ̄W)⊤

We can estimate the causal inner product as . ⟨γ̄, γ̄′￼⟩C = γ̄⊤Cov(γ)−1γ̄′￼
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Differences between counterfactual pairs are more parallel to  than those 
between random pairs, supporting the linear representation hypothesis.

γ̄W

We estimate the unembedding representations for various concepts by 
using the counterfactual pairs from a word analogy dataset.

λ = λ("Long live the") λ = λ("Long live the") + αλ̄male⇒female

W = W = W =

Heatmaps of  show that the causal inner product (left) between the 
unembedding representations of causally separable concepts is close to zero. 

It clearly improves on the naive Euclidean inner product (right).

⟨γ̄W, γ̄W′￼

⟩

 (left) separates the embeddings of French and 
Spanish contexts, while  (right) does not.

γ̄French⇒Spanish
γ̄male⇒female

Adding the embedding representation        
to context embeddings changes the target concept,       
without changing other causally separable concepts.

λ̄W := Cov−1(γ)γ̄W

Problem: It is not clear how these ideas relate to each other, nor 
which is the right notion of linear representation.

There are three natural ways to define the notion of linear representation.

Subspace

“man”

“woman”

“king”

“queen”

(word2vec)

InterventionMeasurement
(linear probe) (steering vector)

English
French

logit p(y = 1 |x) = β⊤ x

Rep("He is the")

male ⇒ female

“king”

“queen”Rep(?)

⟨γ("Paris") − γ("France"), γ̄country⇒capital⟩C

⟨γ("Cairo") − γ("Egypt"), γ̄country⇒capital⟩C

⟨γ("Tokyo") − γ("Japan"), γ̄country⇒capital⟩C

⋮

⟨γ("chairs") − γ("happy"), γ̄country⇒capital⟩C

⟨γ("April") − γ("jump"), γ̄country⇒capital⟩C

⟨γ("volcano") − γ("wrote"), γ̄country⇒capital⟩C

⋮

Concepts  and  are causally separable if  is well-defined, 
that is, they can be manipulated freely and in isolation.

W Z Y(w, z)
A concept  is defined by counterfactual outputs .W Y(W = 0), Y(W = 1)

Embedding

λ(x) ∈ ℝd ℙ(y ∣ x) ∝ exp(λ(x)⊤γ(y))
Softmax Unembedding

γ(y) ∈ ℝd

W

Z

X

Context

“He is the”

male (W = 0) ⇒ female (W = 1)

English (Z = 0) ⇒ French (Z = 1)

Y

Next word
“king”

“queen”
“roi”

“reine”

Y(0,0)
Y(1,0)
Y(0,1)
Y(1,1)

Concepts

⋮

LLMs generate the next word using the softmax distribution.
W = W =

γ̄⊤
Wλ(xes)γ̄⊤

Wλ(xfr)

Causal Inner Product

Unembedding Representation γ̄W

γ(Y(1)) − γ(Y(0)) = αγ̄W (α > 0)

for any counterfactual pairs  (Y(0), Y(1))

Embedding Representation λ̄W

λ1 − λ0 = α′￼λ̄W (α′￼ > 0)
for any counterfactual pairs  

s.t.   and 

(λ0, λ1)
ℙ(W = 1 ∣ λ1)
ℙ(W = 1 ∣ λ0)

> 1
ℙ(Z ∣ W, λ1)
ℙ(Z ∣ W, λ0)

= 1

Measurement Representation

logit ℙ(W = 1 ∣ λ) = αλ⊤γ̄W

 Theorem 

Intervention Representation

ℙ(Z = 1 ∣ W, λ + cλ̄W) constant in c ∈ ℝ
ℙ(W = 1 ∣ Z, λ + cλ̄W) increasing in c ∈ ℝ

 Theorem 

ҧ𝛾male⇒female
≈ 𝛾 "queen" − 𝛾("king")

ҧ𝑔male⇒female
= ҧ𝑙male⇒female ҧ𝑔English⇒French

= ҧ𝑙English⇒French

Causal Inner Product

ҧ𝛾English⇒French
≈ 𝛾 "roi" − 𝛾("king")

ҧ𝜆English⇒French
≈ 𝜆 "Il est le" − 𝜆("He is the")

ҧ𝜆male⇒female
≈ 𝜆 "She is the" − 𝜆("He is the")

 Theorem 

Experiments with LLaMA-2

Linear Representations Exist

Causally Separable Concepts are Represented 
Orthogonally under the Causal Inner Product

Unembedding Representation Yields Linear Probe

Embedding Representation Yields Steering Vector


